G. Rosati, D. Zanotto, and S. K. Agrawal
On the design of adaptive cable-driven systems
Journal of Mechanisms and Robotics - Transactions of the ASME, 3(2):021004, 2011

Abstract: Several systematic approaches have been developed for the optimal design of cable-based systems. Global indices are usually employed to quantify the effectiveness of a specific design inside a reference region of the workspace. The performances at the moving platform are strictly related to cables configuration which, in turn, depends on the pose of the moving platform. As a result, traditional designs are characterized by high variability of performances within the workspace, and are often badly-tailored to the design goals. The motivation behind this paper is to formalize a new design methodology for cable-driven devices. Based on a total or partial decoupling between cables disposition and end-effector pose, this methodology allows to achievewell-tailored design solutions for a given design requirement. The resulting systems are here defined as Adaptive Cable-Driven Systems. Two simple design problems are presented and solved with both the traditional and the novel approaches, and the advantages of the latter are emphasized by comparing the resulting design solutions.

Topic: Haptic Interfaces

Home | Info | Research | People | Map | Italian